
Query String
The most common approach to pass information to server is by using a query string

in the URL. This approach is mostly found in search engines. For example, if you perform a
search on the Google website, you’ll be redirected to a new URL that make use of your
search parameters. For example:

http://www.google.com/search?q=shahu+college

The query string is the portion of the URL after the question mark. In example above, it
defines a single variable named q, which contains the string shahu+college.

The advantage of the query string is that it’s lightweight and doesn’t apply any kind of
burden on the server.
However, it has limitation also:

Information is limited to simple strings, which must contain URL-legal characters.

Information is clearly visible to the user and to anyone else who cares to eavesdrop on the
Internet.

Many browsers impose a limit on the length of a URL (usually from 1 KB to 2 KB), you can’t
place a large amount of information in the query string and still be assured of compatibility
with most browsers.

The Response.Redirect() methodis used to build query string:

Response.Redirect("newpage.aspx?recordID=10");

You can send multiple parameters separated with an ampersand (&):

Response.Redirect("newpage.aspx?recordID=10&class=BCATY");

The receiving page has an easier time working with the query string. It can receive the
values from the QueryString dictionary collection exposed by the built-in Request object:

string ID = Request.QueryString["recordID"];
classname = Request.QueryString["class"];

Cookies

Cookies provide a way to store information for later use. Cookies are small files
that are created in the web browser’s memory (if they’re temporary) or on the client’s
hard drive (if they’re permanent). One advantage of cookies is that they work
transparently, without the user being aware that information needs to be stored.
As cookies are stored on the user’s computer as plaintext, you should never use them to
store any sensitive data, such as a password.

The following line of code is used to create cookies:

HttpCookie myCookie = new HttpCookie("CookieName");
myCookie.Expires = DateTime.Now.AddMonths(3);
myCookie.Value = "My Cookie";
Response.Cookies.Add(myCookie);

To read cookie the line of code can be implemented as

HttpCookie myCookie = Request.Cookies.Get("CookieName");
if (myCookie != null)
{
Label1.Text = myCookie.Value; // would display "Cookie value"
}

Creating and Using Web Services

Steps to create web service:

Step 1: Open .Net Visual Studio, create an Empty web site.

Step 2: Right click on App location in Solution Explorer and Select “Add New Item”, form add new
item dialog box select and add “WebService” and file with “.asmx” extension.
This file contains some program line as given below

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

/// <summary>
/// Summary description for WebService
/// </summary>
[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
// To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line.
// [System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService {

 public WebService () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public string HelloWorld() {
 return "Hello World";
 }

}

From above line of code the part

 [WebMethod]
 public string HelloWorld() {
 return "Hello World";
 }

Containing the methods used as web services. You can add your own methods, like

[WebMethod]
 public int MyCalc(int x, int y)
 {
 return x * y;
 }

Accordingly go on adding methods as per the need of our web application.

Step 3: To test these newly added methods just execute the project, it will run in web browser, and
the following output will be observed. After Executing it will display the names of web services.

To execute these services just click on the name of the web service. The output screen of “MyCalc”
web service can be shown as

Web Services

As MyCalc service requires two parameters, it will ask for two values.

Making the use of web service in the Web Application:

Step1: To make use of this Web Service add an Web Form (i.e. Default.aspx page) in the project.

Step 2: Right click in solution explorer, select “add web reference”, this will open Add Web
Reference dialog box, from the dialog box, Click on “Select Web Services in this solution” as shown
in the figure.

Fig 1. Add Web Reference

Fig 2. Showing URL for web services and Web Reference Name

Step 3: From the dialog box above click on the Add Reference button. This will add “.disco” and “.wsdl”
files in the application.

Step 4: Now add two textbox controls and a button control, and on the click event of button control add
the following line of code in code behind model of the Default.aspx file.

 localhost.WebService wc = new localhost.WebService();
 int a = int.Parse(TextBox1.Text);
 int b = int.Parse(TextBox2.Text);
 int c = wc.MyCalc(a, b);
 Label1.Text = "Answer is " + c.ToString();

Database Connectivity:
Inserting a record in the table:

Design of Application:

Programme code for the design:
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>Student Information</h1>

 Student P.R.No : <asp:TextBox ID=txtprno runat="server"></asp:TextBox>

 Student Name : <asp:TextBox ID=txtsname runat="server"></asp:TextBox>

 contact No : <asp:TextBox ID = txtcno runat="server"></asp:TextBox>

 <asp:Button ID="btnSave" Text="Save" runat="server" onclick="btnSave_Click" />
 <asp:Button ID="btnClear" Text="Clear" runat="server" />

 <asp:Label ID="Label1" runat="server" Text=""></asp:Label>
 </div>
 </form>
</body>
</html>

C# code for database connectivity:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data.OleDb;
using System.Data;

public partial class _Default : System.Web.UI.Page
{
 OleDbConnection con = new OleDbConnection(@"Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=E:\DataBaseDemo\student.accdb");
 OleDbCommand cmd;
 protected void Page_Load(object sender, EventArgs e)
 {
 con.Open();

 }
 protected void btnSave_Click(object sender, EventArgs e)
 {
 string s;
 s = "insert into studdtl values(" + txtprno.Text + ",'" + txtsname.Text + "'," + txtcno.Text + ")";
 cmd = new OleDbCommand();
 cmd.Connection = con;
 cmd.CommandText = s;
 cmd.ExecuteNonQuery();
 Label1.Text = "Record Saved..." + txtprno.Text;
 }
 }

